

Valum Web micro-framework

 [image: Build Status]

 Installation

Installation

This document describes the compilation and installation process. Most of that
work is automated with Meson [http://mesonbuild.com/], a build tool written in Python.

Packages

Packages for RPM and Debian based Linux distributions will be provided for
stable releases so that the framework can easily be installed in a container or
production environment.

Fedora

RPM packages for Fedora (24, 25 and rawhide) and EPEL 7 (CentOS, RHEL) are
available from the arteymix/valum-framework [https://copr.fedoraproject.org/coprs/arteymix/valum-framework/] Copr repository.

dnf copr enable arteymix/valum-framework

The valum-0.3 package contains the shared libraries, valum-0.3-devel
contains all that is necessary to build an application and valum-0.3-doc
deliver user and API documentation.

dnf install valum-0.3 valum-0.3-devel valum-0.3-doc

Nix

nix-shell -p valum

Solus

eopkg it valum

Arch Linux (AUR)

yaourt valum

Subproject

If your project uses the Meson build system, you may integrate the framework as
a subproject. The project must be cloned in the subprojects folder,
preferably using a git submodule. Be careful using a tag and not the master
trunk.

The following variables can be used as dependencies:

	vsgi for the abstraction layer

	valum for the framework

Note that due to Meson design, dependencies must be explicitly provided.

project('app', 'c', 'vala')

glib = dependency('glib-2.0')
gobject = dependency('gobject-2.0')
gio = dependency('gio-2.0')
soup = dependency('libsoup-2.4')
vsgi = subproject('valum').get_variable('vsgi')
valum = subproject('valum').get_variable('valum')

executable('app', 'app.vala',
 dependencies: [glib, gobject, gio, soup, vsgi, valum])

Docker

To use Valum with Docker [http://www.docker.com/], use the provided valum/valum [https://hub.docker.com/r/valum/valum/] image. It is based
on the latest stable Ubuntu.

FROM valum/valum:latest

WORKDIR /app
ADD . .

RUN valac --pkg=valum-0.3 app.vala

EXPOSE 3003

ENTRYPOINT /app/app

Vagrant

You can provision a Vagrant [https://www.vagrantup.com/] VM with Valum. There’s no Vagrantfile
provided because each project will likely have it’s own setup and deployment
constraints.

wget https://github.com/valum-framework/valum/archive/v0.3.0.zip

unzip v0.3.0.zip

cd valum-0.3.0
mkdir build
meson --prefix=/usr --buildtype=release build
ninja -C build
ninja -C build test
ninja -C build install

Dependencies

The following dependencies are minimal to build the framework under Ubuntu
12.04 LTS and should be satisfied by most recent Linux distributions.

	Package

	Version

	vala

	>=0.26

	python

	>=3.4

	meson

	>=0.36

	ninja

	>=1.6.0

	glib-2.0

	>=2.40

	gio-2.0

	>=2.40

	gio-unix-2.0

	>=2.40

	libsoup-2.4

	>=2.44

Recent dependencies will enable more advanced features:

	Package

	Version

	Feature

	gio-2.0

	>=2.44

	better support for asynchronous I/O

	libsoup-2.4

	>=2.48

	new server API

You can also install additional dependencies to build the examples, you will
have to specify the -D enable_examples=true flag during the configure step.

	Package

	Description

	ctpl

	C templating library

	gee-0.8

	data structures

	json-glib-1.0

	JSON library

	libmemcached

	client for memcached cache storage

	libluajit

	embed a Lua VM

	libmarkdown

	parser and generator for Markdown

	template-glib

	templating library

Download the sources

You may either clone the whole git repository or download one of our
releases from GitHub [https://github.com/valum-framework/valum/releases]:

git clone git://github.com/valum-framework/valum.git && cd valum

The master branch is a development trunk and is not guaranteed to be very
stable. It is always a better idea to checkout the latest tagged release.

Build

mkdir build && cd build
meson ..
ninja # or 'ninja-build' on some distribution

Install

The framework can be installed for system-wide availability.

sudo ninja install

Once installed, VSGI implementations will be looked up into ${prefix}/${libdir}/vsgi-0.3/servers.
This path can be changed by setting the VSGI_SERVER_PATH environment
variable.

Run the tests

ninja test

If any of them fail, please open an issue on GitHub [https://github.com/valum-framework/valum/issues] so that we can tackle
the bug. Include the test logs (e.g. build/meson-private/mesonlogs.txt) and
any relevant details.

Run the sample application

You can run the sample application from the build folder if you called
meson with the -D enable_examples=true flag. The following example uses
the HTTP server.

./build/example/app/app

 Quickstart

Quickstart

Assuming that Valum is built and installed correctly (view Installation
for more details), you are ready to create your first application!

Simple ‘Hello world!’ application

You can use this sample application and project structure as a basis. The full
valum-framework/example [https://github.com/valum-framework/example] is available on GitHub and is kept up-to-date with
the latest release of the framework.

using Valum;
using VSGI;

var app = new Router ();

app.get ("/", (req, res) => {
 res.headers.set_content_type ("text/plain", null);
 return res.expand_utf8 ("Hello world!");
});

Server.new ("http", handler: app).run ({"app", "--port", "3003"});

Typically, the run function contains CLI argument to make runtime the
parametrizable.

It is suggested to use the following structure for your project, but you can do
pretty much what you think is the best for your needs.

build/
src/
 app.vala

Building with valac

Simple applications can be built directly with valac:

valac --pkg=valum-0.3 -o build/app src/app.vala

The vala program will build and run the produced binary, which is
convenient for testing:

vala --pkg=valum-0.3 src/app.vala

Building with Meson

Meson [http://mesonbuild.com/] is highly-recommended for its simplicity and expressiveness. It’s not
as flexible as waf, but it will handle most projects very well.

project('example', 'c', 'vala')

glib_dep = dependency('glib-2.0')
gobject_dep = dependency('gobject-2.0')
gio_dep = dependency('gio-2.0')
soup_dep = dependency('libsoup-2.4')
vsgi_dep = dependency('vsgi-0.3') # or subproject('valum').get_variable('vsgi')
valum_dep = dependency('valum-0.3') # or subproject('valum').get_variable('valum')

executable('app', 'src/app.vala',
 dependencies: [glib_dep, gobject_dep, gio_dep, soup_dep, vsgi_dep, valum_dep])

mkdir build && cd build
meson ..
ninja

To include Valum as a subproject, it is sufficient to clone the repository into
subprojects/valum.

Building with waf

It is preferable to use a build system like waf [https://code.google.com/p/waf/] to automate all this
process. Get a release of waf and copy this file under the name wscript
at the root of your project.

def options(cfg):
 cfg.load('compiler_c')

def configure(cfg):
 cfg.load('compiler_c vala')
 cfg.check_cfg(package='valum-0.3', uselib_store='VALUM', args='--libs --cflags')

def build(bld):
 bld.load('compiler_c vala')
 bld.program(
 packages = 'valum-0.3',
 target = 'app',
 source = 'src/app.vala',
 use = 'VALUM')

You should now be able to build by issuing the following commands:

./waf configure
./waf build

Running the example

VSGI produces process-based applications that are either self-hosted or able to
communicate with a HTTP server according to a standardized protocol.

The HTTP implementation is self-hosting, so you just have to
run it and point your browser at http://127.0.0.1:3003 to see the result.

./build/app

 Application

Application

This document explains step-by-step the sample presented in the
Quickstart document.

Many implementations are provided and documented in Server.

Creating an application

An application is defined by a function that respects the VSGI.ApplicationCallback
delegate. The Router provides handle for that purpose along with
powerful routing facilities for client requests.

var app = new Router ();

Binding a route

An application constitute of a list of routes matching and handling user
requests. The router provides helpers to declare routes which internally use
Route instances.

app.get ("/", (req, res, next, context) => {
 return res.expand_utf8 ("Hello world!");
});

Every route declaration has a callback associated that does the request
processing. The callback, named handler, receives four arguments:

	a Request that describes a resource being requested

	a Response that correspond to that resource

	a next continuation to keep routing

	a routing context to retrieve and store states from previous and for
following handlers

Note

For an alternative, more structured approach to route binding, see
Cleaning up route logic

Serving the application

This part is pretty straightforward: you create a server that will serve
your application at port 3003 and since http was specified, it
will be served with HTTP.

Server.new ("http", handler: app).run ({"app", "--port", "3003"});

Server takes a server implementation and an
ApplicationCallback, which is respected by the handle function.

Usually, you would only pass the CLI arguments to run, so that your runtime
can be parametrized easily, but in this case we just want our application to
run with fixed parameters. Options are documented per implementation.

public static void main (string[] args) {
 var app = new Router ();

 // assume some route declarations...

 Server.new ("http", handler: app).run (args);
}

 VSGI

VSGI

VSGI is a middleware that interfaces different Web server technologies under a
common and simple set of abstractions.

For the moment, it is developed along with Valum to target the needs of a Web
framework, but it will eventually be extracted and distributed as a shared
library.

	HTTP authentication
	Basic

	Connection

	Request
	Method

	Headers
	Cookies

	Query

	Body
	Flatten

	Form

	Multipart body

	Response
	Status

	Reason phrase

	Headers

	Body
	Expand

	Filtering

	Conversion

	Tee

	End

	Cookies
	Extract cookies

	Lookup a cookie

	Marshall a cookie

	Sign and verify

	Converters

	Server
	HTTP
	Parameters
	Notes

	CGI
	lighttpd

	FastCGI
	Parameters

	Lighttpd

	Apache

	Nginx

	SCGI
	Parameters

	Lighttpd

	Apache

	Nginx

	Custom implementation

	Parameters

	Listening

	Serving

	Forking

	Application
	CLI

VSGI produces process-based applications that are able to communicate with
various HTTP servers using standardized protocols.

Handler

The entry point of any VSGI application implement the vsgi-0.3/VSGI.Handler [http://valadoc.org/vsgi-0.3/VSGI.Handler.html]
abstract class. It provides a function of two arguments: a Request and
a Response that return a boolean indicating if the request has been or
will be processed. It may also raise an error.

using VSGI;

public class App : Handler {

 public override handle (Request req, Response res) throws Error {
 // process the request and produce the response...
 return true;
 }
}

Server.new ("http", handler: new App ()).run ();

If a handler indicate that the request has not been processed, it’s up to the
server implementation to decide what will happen.

From now on, examples will consist of vsgi-0.3/VSGI.Handler.handle [http://valadoc.org/vsgi-0.3/VSGI.Handler.handle.html]
content to remain more concise.

Error handling

New in version 0.3.

At any moment, an error can be raised and handled by the server implementation
which will in turn teardown the connection appropriately.

throw new IOError.FAILED ("some I/O failed");

Asynchronous processing

The asynchronous processing model follows the RAII pattern [https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization] and wraps all
resources in a connection that inherits from gio-2.0/GLib.IOStream [http://valadoc.org/gio-2.0/GLib.IOStream.html].
It is therefore important that the said connection is kept alive as long as the
streams are being used.

The Request holds a reference to the said connection and the
Response indirectly does as it holds a reference to the request.
Generally speaking, holding a reference on any of these two instances is
sufficient to keep the streams usable.

Warning

As VSGI relies on reference counting to free the resources underlying
a request, you must keep a reference to either the Request or
Response during the processing, including in asynchronous callbacks.

It is important that the connection persist until all streams operations are
done as the following example demonstrates:

res.body.write_async.begin ("Hello world!",
 Priority.DEFAULT,
 null,
 (body, result) => {
 // the response reference will make the connection persist
 var written = res.body.write_async.end (result);
});

Dynamic loading

New in version 0.3.

It could be handy to dynamically load handlers the same way
Server are.

Fortunately, this can be performed with the HandlerModule by providing
a directory and name for the shared library containing a dynamically loadable
application.

var module = var new HandlerModule ("<directory>", "<name>");

Server.new ("http", handler: Object.new (module.handler_type)).run ();

The only required definition is a handler_init symbol that return the type
of some Handler. In this case, the library should be located in <directory>/lib<name>.so,
although the actual name is system-dependant.

[ModuleInit]
public Type handler_init (TypeModule type_module) {
 return typeof (App);
}

public class App : Handler {

 public bool handle (Request req, Response res) {
 return res.expand_utf8 ("Hello world!");
 }
}

Eventually, this will be used to provide a utility to run arbitrary
applications with support for live-reloading.

 HTTP authentication

HTTP authentication

VSGI provide implementations of both basic and digest authentication schemes
respectively defined in RFC 7617 [https://tools.ietf.org/html/rfc7617] and RFC 7616 [https://tools.ietf.org/html/rfc7616].

Both Authentication and Authorization objects are provided to produce
and interpret their corresponding HTTP headers. The typical authentication
pattern is highlighted in the following example:

var authentication = BasicAuthentication ("realm");

var authorization_header = req.headers.get_one ("Authorization");

if (authorization_header != null) {
 if (authentication.parse_authorization_header (authorization_header,
 out authorization)) {
 var user = User.from_username (authorization.username);
 if (authorization.challenge (user.password)) {
 return res.expand_utf8 ("Authentication successful!");
 }
 }
}

res.headers.replace ("WWW-Authenticate", authentication.to_authenticate_header ());

Basic

The Basic authentication scheme is the simplest one and expect the user
agent to provide username and password in plain text. It should be used
exclusively on a secured transport (e.g. HTTPS).

 Connection

Connection

All resources necessary to process a Request and produce
a Response are bound to the lifecycle of a connection instance.

Warning

It is not recommended to use this directly as it will most likely result in
corrupted operations with no regard to the transfer encoding or message
format.

The connection can be accessed from the Request connection property.
It is a simple gio-2.0/GLib.IOStream [http://valadoc.org/gio-2.0/GLib.IOStream.html] that provides native access to
the input and output stream of the used technology.

The following example shows how to bypass processing with higher-level
abstractions. It will only work on HTTP, as CGI-like protocols
require the status to be part of the response headers.

var message = req.connection.output_stream;
message.write_all ("200 Success HTTP/1.1\r\n".data. null);
message.write_all ("Connection: close\r\n");
message.write_all ("Content-Type: text/plain\r\n");
message.write_all ("\r\n".data);
message.write_all ("Hello world!".data);

 Request

Request

Requests are representing incoming demands from user agents to resources served
by an application.

Method

Deprecated since version 0.3: libsoup-2.4 provide an enumeration of valid HTTP methods and this will be
removed once exposed in their Vala API.

The Request class provides constants for the following HTTP methods:

	OPTIONS

	GET

	HEAD

	POST

	PUT

	DELETE

	TRACE

	CONNECT

	PATCH

Additionally, an array of supported HTTP methods is provided by
Request.METHODS.

if (req.method == Request.GET) {
 return res.expand_utf8 ("Hello world!");
}

if (req.method == Request.POST) {
 return res.body.splice (req.body, OutputStreamSpliceFlags.NONE);
}

if (req.method in Request.METHODS) {
 // handle a standard HTTP method...
}

Headers

Request headers are implemented with libsoup-2.4/Soup.MessageHeaders [http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.html]
and can be accessed from the headers property.

var accept = req.headers.get_one ("Accept");

libsoup-2.4 provides a very extensive set of utilities to process the
information contained in headers.

SList<string> unacceptable;
Soup.header_parse_quality_list (req.headers.get_list ("Accept"), out unacceptable);

Cookies

Cookies can also be retrieved from the request headers.

Query

The HTTP query is provided in various way:

	parsed as a HashTable<string, string>? through the Request.query
property

	raw with Request.uri.get_query

If the query is not provided (e.g. no ? in the URI), then the
Request.query property will take the null value.

Note

If the query is not encoded according to application/x-www-form-urlencoded,
it has to be parsed explicitly.

To safely obtain a value from the HTTP query, use Request.lookup_query with
the null-coalescing operator ??.

req.lookup_query ("key") ?? "default value";

Body

The body is provided as a gio-2.0/GLib.InputStream [http://valadoc.org/gio-2.0/GLib.InputStream.html] by the body
property. The stream is transparently decoded from any applied transfer
encodings.

Implementation will typically consume the status line, headers and newline that
separates the headers from the body in the base stream at construct time. It
also guarantee that the body has been decoded if any transfer encoding were
applied for the transport.

If the content is encoded with the Content-Encoding header, it is the
responsibility of your application to decode it properly. VSGI provides common
Converters to simplify the task.

Flatten

New in version 0.2.4.

In some cases, it is practical to flatten the whole request body in a buffer
in order to process it as a whole.

The flatten, flatten_bytes and flatten_utf8 functions accumulate
the request body into a buffer (a gio-2.0/GLib.MemoryOutputStream [http://valadoc.org/gio-2.0/GLib.MemoryOutputStream.html])
and return the corresponding uint8[] data buffer.

The request body is always fixed-size since the HTTP specification requires any
request to provide a Content-Length header. However, the environment should
be configured with a hard limit on payload size.

When you are done, it is generally a good thing to close the request body and
depending on the used implementation, this could have great benefits such as
freeing a file resource.

var payload = req.flatten ();

Form

libsoup-2.4/Soup.Form [http://valadoc.org/libsoup-2.4/Soup.Form.html] can be used to parse application/x-www-form-urlencoded
format, which is submitted by Web browsers.

var data = Soup.Form.decode (req.flatten_utf8 (out bytes_read));

Multipart body

Multipart body support is planned in a future minor release, more information
on issue #81 [https://github.com/valum-framework/valum/issues/81]. The implementation will be similar to libsoup-2.4/Soup.MultipartInputStream [http://valadoc.org/libsoup-2.4/Soup.MultipartInputStream.html]
and provide part access with a filter approach.

 Response

Response

Responses are representing resources requested by a user agent. They are
actively streamed across the network, preferably using non-blocking
asynchronous I/O.

Status

The response status can be set with the status property. libsoup-2.4
provides an enumeration in libsoup-2.4/Soup.Status [http://valadoc.org/libsoup-2.4/Soup.Status.html] for that purpose.

The status property will default to 200 OK.

The status code will be written in the response with write_head or
write_head_async if invoked manually. Otherwise, it is left to the
implementation to call it at a proper moment.

res.status = Soup.Status.MALFORMED;

Reason phrase

New in version 0.3.

The reason phrase provide a textual description for the status code. If
null, which is the default, it will be generated using
libsoup-2.4/Soup.Status.get_phrase [http://valadoc.org/libsoup-2.4/Soup.Status.get_phrase.html]. It is written along with the
status line if write_head or write_head_async is invoked.

res.status = Soup.Status.OK;
res.reason_phrase = "Everything Went Well"

To obtain final status line sent to the user agent, use the wrote_status_line
signal.

res.wrote_status_line.connect ((http_version, status, reason_phrase) => {
 if (200 <= status < 300) {
 // assuming a success
 }
});

Headers

The response headers can be accessed as a libsoup-2.4/Soup.MessageHeaders [http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.html]
from the headers property.

res.headers.set_content_type ("text/plain", null);

Headers can be written in the response synchronously by invoking
write_head or asynchronously with write_head_async.

res.write_head_async.begin (Priority.DEFAULT, null, () => {
 // produce the body...
});

Warning

Once written, any modification to the headers object will be ignored.

The head_written property can be tested to see if it’s already the case,
even though a well written application should assume that already.

if (!res.head_written) {
 res.headers.set_content_type ("text/html", null);
}

Since headers can still be modified once written, the wrote_headers signal
can be used to obtain definitive values.

res.wrote_headers (() => {
 foreach (var cookie in res.cookies) {
 message (cookie.to_set_cookie_header ());
 }
});

Body

The body of a response is accessed through the body property. It inherits
from gio-2.0/GLib.OutputStream [http://valadoc.org/gio-2.0/GLib.OutputStream.html] and provides synchronous and
asynchronous streaming capabilities.

The response body is automatically closed following a RAII pattern whenever the
Response object is disposed.

Note that a reference to the body is not sufficient to maintain the inner
Connection alive: a reference to either the Request or response
be maintained.

You can still close the body early as it can provide multiple advantages:

	avoid further and undesired read or write operation

	indicate to the user agent that the body has been fully sent

Expand

New in version 0.3.

To deal with fixed-size body, expand, expand_bytes,
expand_utf8 and expand_file utilities as well as their respective
asynchronous versions are provided.

It will automatically set the Content-Length header to the size of the
provided buffer, write the response head and pipe the buffer into the body
stream and close it properly.

res.expand_utf8 ("Hello world!");

Filtering

One common operation related to stream is filtering. gio-2.0/GLib.FilterOutputStream [http://valadoc.org/gio-2.0/GLib.FilterOutputStream.html]
and gio-2.0/GLib.ConverterOutputStream [http://valadoc.org/gio-2.0/GLib.ConverterOutputStream.html] provide, by composition, many
filters that can be used for:

	compression and decompression (gzip, deflate, compress, …)

	charset conversion

	buffering

	writting data

VSGI also provides its own set of Converters which cover parts of the
HTTP/1.1 specifications such as chunked encoding.

var body = new ConverterOutputStream (res.body,
 new CharsetConverter (res.body, "iso-8859-1", "utf-8"));

return body.write_all ("Omelette du fromâge!", null);

Additionally, some filters are applied automatically if the Transfer-Encoding
header is set. The obtained gio-2.0/GLib.OutputStream [http://valadoc.org/gio-2.0/GLib.OutputStream.html] will be
wrapped appropriately so that the application can transparently produce its
output.

res.headers.append ("Transfer-Encoding", "chunked");
return res.body.write_all ("Hello world!".data, null);

Conversion

New in version 0.3.

The body may be converted, see Converters for more details.

Tee

New in version 0.3.

The response body can be splitted pretty much like how the tee UNIX utility
works. All further write operations will be performed as well on the passed
stream, making it possible to process the payload sent to the user agent.

The typical use case would be to implement a file-based cache that would tee
the produced response body into a key-based storage.

var cache_key = Checksum.compute_for_string (ChecksumType.SHA256, req.uri.to_string ());
var cache_entry = File.new_for_path ("cache/%s".printf (cache_key));

if (cache_entry.query_exists ()) {
 return res.body.splice (cache_entry.read ());
} else {
 res.tee (cache_entry.create (FileCreateFlags.PRIVATE));
}

res.expand_utf8 ("Hello world!");

End

New in version 0.3.

To properly close the response, writing headers if missing, end is
provided:

res.status = Soup.Status.NO_CONTENT;
res.end ();

To produce a message before closing, favour extend utilities.

 Cookies

Cookies

Cookies are stored in Request and Response headers as
part of the HTTP protocol.

Utilities are provided to perform basic operations based on libsoup-2.4/Soup.Cookie [http://valadoc.org/libsoup-2.4/Soup.Cookie.html]
as those provided by libsoup-2.4 requires a libsoup-2.4/Soup.Message [http://valadoc.org/libsoup-2.4/Soup.Message.html],
which is not common to all implementations.

	extract cookies from request headers

	find a cookie by its name

	marshall cookies for request or response headers (provided by libsoup-2.4)

Extract cookies

Cookies can be extracted as a singly-linked list from a Request or
Response their order of appearance (see libsoup-2.4/Soup.MessageHeaders.get_list [http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.get_list.html]
for more details).

The Request.cookies property will extract cookies from the Cookie
headers. Only the name and value fields will be filled as it is the
sole information sent by the client.

var cookies = req.cookies;

The equivalent property exist for Response and will extract the
Set-Cookie headers instead. The corresponding Request URI will be
used for the cookies origin.

var cookies = res.cookies;

The extracted cookies can be manipulated with common glib-2.0/GLib.SList [http://valadoc.org/glib-2.0/GLib.SList.html]
operations. However, they must be written back into the Response for the
changes to be effective.

Warning

Cookies will be in their order of appearance and glib-2.0/SList.reverse [http://valadoc.org/glib-2.0/SList.reverse.html]
should be used prior to perform a lookup that respects precedence.

cookies.reverse ();

for (var cookie in cookies)
 if (cookie.name == "session")
 return cookie;

Lookup a cookie

You can lookup a cookie by its name from a Request using
lookup_cookie, null is returned if no such cookies can be found.

Warning

Although this is not formally specified, cookies name are considered as
being case-sensitive by CookieUtils utilities.

If it’s signed (recommended for sessions), the equivalent
lookup_signed_cookie exists.

string? session_id;
var session = req.lookup_signed_cookie ("session", ChecksumType.SHA512, "secret".data, out session_id);

Marshall a cookie

libsoup-2.4 provides a complete implementation with the libsoup-2.4/Soup.Cookie [http://valadoc.org/libsoup-2.4/Soup.Cookie.html]
class to represent and marshall cookies for both request and response headers.

The newly created cookie can be sent by adding a Set-Cookie header in the
Response.

var cookie = new Cookie ("name", "value", "0.0.0.0", "/", 60);
res.headers.append ("Set-Cookie", cookie.to_set_cookie_header ());

Sign and verify

Considering that cookies are persisted by the user agent, it might be necessary
to sign to prevent forgery. CookieUtils.sign and CookieUtils.verify
functions are provided for the purposes of signing and verifying cookies.

Warning

Be careful when you choose and store the secret key. Also, changing it will
break any previously signed cookies, which may still be submitted by user
agents.

It’s up to you to choose what hashing algorithm and secret: SHA512 is
generally recommended.

The CookieUtils.sign utility will sign the cookie in-place. It can then be
verified using CookieUtils.verify.

The value will be stored in the output parameter if the verification process is
successful.

CookieUtils.sign (cookie, ChecksumType.SHA512, "secret".data);

string value;
if (CookieUtils.verify (cookie, ChecksumType.SHA512, "secret.data", out value)) {
 // cookie's okay and the original value is stored in value
}

The signature is computed in a way it guarantees that:

	we have produced the value

	we have produced the name and associated it to the value

The algorithm is the following:

HMAC (checksum_type, key, HMAC (checksum_type, key, value) + name) + value

The verification process does not handle special cases like values smaller than
the hashing: cookies are either signed or not, even if their values are
incorrectly formed.

If well-formed, cookies are verified in constant-time to prevent time-based
attacks.

 Converters

Converters

VSGI provide stream utilities named converters to convert data according to
modern Web standards.

These are particularly useful to encode and recode request and response bodies
in VSGI implementations.

GLib provide default converters for charset conversion and zlib compression.
These can be used to compress the message bodies and convert the string
encoding transparently.

	gio-2.0/GLib.CharsetConverter [http://valadoc.org/gio-2.0/GLib.CharsetConverter.html]

	gio-2.0/GLib.ZLibCompressor [http://valadoc.org/gio-2.0/GLib.ZLibCompressor.html]

	gio-2.0/GLib.ZLibDecompressor [http://valadoc.org/gio-2.0/GLib.ZLibDecompressor.html]

Converters can be applied on both the Request and Response object
using the convert method.

res.headers.append ("Content-Encoding", "gzip");
res.convert (new ZlibCompressor (ZlibCompressorFormat.GZIP));

Warning

The Content-Encoding header must be adapted to reflect the current set
of encodings applied (or unapplied) on the payload.

Since conversion typically affect the resulting size of the payload, the
Content-Length header must be set appropriately. To ease that, the new
value can be specified as second argument. Note that -1 is used to describe
an undetermined length.

res.convert (new CharsetConverter ("UTF-8", "ascii"), res.headers.get_content_length ());

The default, which apply in most cases, is to remove the Content-Length
header and thus describe an undetermined length.

 Server

Server

Server provide HTTP technologies integrations under a common interface.

	HTTP
	Parameters
	Notes

	CGI
	lighttpd

	FastCGI
	Parameters

	Lighttpd

	Apache

	Nginx

	SCGI
	Parameters

	Lighttpd

	Apache

	Nginx

Server implementations are dynamically loaded using gmodule-2.0/GLib.Module [http://valadoc.org/gmodule-2.0/GLib.Module.html].
It makes it possible to define its own implementation if necessary.

To load an implementation, use the Server.new factory, which can receive
GObject-style arguments as well.

var cgi_server = Server.new ("cgi");

if (cgi_server == null) {
 assert_not_reached ();
}

cgi_server.set_application_callback ((req, res) => {
 return res.expand_utf8 ("Hello world!");
});

Custom implementation

For more flexibility, the ServerModule class allow a more fine-grained
control for loading a server implementation. If non-null, the directory
property will be used to retrieve the implementation from the given path
instead of standard locations.

The computed path of the shared library is available from path property,
which can be used for debugging purposes.

The shared library name must conform to vsgi-<name> with the appropriate
prefix and extension. For instance, on GNU/Linux, the CGI module is
stored in ${prefix}/${libdir}/vsgi-0.3/servers/libvsgi-cgi.so.

var directory = "/usr/lib64/vsgi-0.3/servers";
var cgi_module = new ServerModule (directory, "cgi");

if (!cgi_module.load ()) {
 error ("could not load 'cgi' from '%s'", cgi_module.path);
}

var server = Object.new (cgi_module.server_type);

Unloading a module is not necessary: once initially loaded, a use count is kept
so that it can be loaded on need or unloaded if not used.

Warning

Since a ServerModule cannot be disposed (see gobject-2.0/GLib.TypeModule [http://valadoc.org/gobject-2.0/GLib.TypeModule.html]),
one must be careful of how its reference is being handled. For instance,
Server.new keeps track of requested implementations and persist them
forever.

Mixing direct usages of ServerModule and Server.@new (and the likes) is
not recommended and will result in undefined behaviours if an implementation is
loaded more than once.

Parameters

Each server implementation expose its own set of parameters via GObject
properties which are passed using the provided static constructors:

var https_server = Server.new ("http", https: true);

More details on available parameters are presented in implementation-specific
documents.

Listening

Once initialized, a server can be made ready to listen with listen and
listen_socket. Implementations typically support listening from an
arbitrary number of interfaces.

If the provided parameters are not supported, a gio-2.0/GLib.IOError.NOT_SUPPORTED [http://valadoc.org/gio-2.0/GLib.IOError.NOT_SUPPORTED.html]
will be raised.

The listen call is designed to make the server listen on a gio-2.0/GLib.SocketAddress [http://valadoc.org/gio-2.0/GLib.SocketAddress.html]
such as gio-2.0/GLib.InetSocketAddress [http://valadoc.org/gio-2.0/GLib.InetSocketAddress.html] and gio-2.0/GLib.UnixSocketAddress [http://valadoc.org/gio-2.0/GLib.UnixSocketAddress.html].

server.listen (new InetSocketAddress (new InetAddress.loopback (SocketFamily.IPV4), 3003));

It’s also possible to pass null such that the default interface for the
implementation will be used.

server.listen (); // default is 'null'

The listen_socket call make the server listen on an existing socket or file
descriptor if passed through GLib.Socket.from_fd.

server.listen_socket (new Socket.from_fd (0));

Serving

Once ready, either call Server.run or launch a glib-2.0/GLib.MainLoop [http://valadoc.org/glib-2.0/GLib.MainLoop.html]
to start serving incoming requests:

using GLib;
using VSGI;

var server = Server.new ("http");

server.listen (new InetSocketAddress (new InetAddress (SocketFamily.IPV4), 3003));

new MainLoop ().run (); // or server.run ();

Forking

To achieve optimal performances on a multi-core architecture, VSGI support
forking at the server level.

Warning

Keep in mind that the fork system call will actually copy the whole
process: no resources (e.g. lock, memory) can be shared unless
inter-process communication is used.

The Server.fork call is used for that purpose:

using GLib;
using VSGI;

var server = Server.new ("http");

server.listen (new InetSocketAddress (new InetAddress.loopback (SocketFamily.IPV4), 3003));

server.fork ();

new MainLoop ().run ();

It is recommended to fork only through that call since implementations such as
CGI are not guaranteed to support it and will gently fallback on doing
nothing.

Application

The VSGI.Application class provide a nice cushion around Server that
deals with pretty logging and CLI argument parsing. The Server.run function
is a shorthand to create and run an application.

using VSGI;

public int main (string[] args) {
 var server = Server.new ("http");
 return new Application (server).run (args);
}

CLI

The following options are made available:

	Option

	Default

	Description

	--forks

	none

	number of forks to create

	--address

	none

	listen on each addresses

	--port

	none

	listen on each ports, ‘0’ for random

	--socket

	none

	listen on each UNIX socket paths

	--any

	disabled

	listen on any address instead of only
from the loopback interface

	--ipv4-only

	disabled

	listen only to IPv4 interfaces

	--ipv6-only

	disabled

	listen only on IPv6 interfaces

	--file-descriptor

	none

	listen on each file descriptors

If none of --address, --port, --socket nor --file-descriptor
flags are provided, it will fallback on the default listening interface for the
implementation.

The --address flag uses gio-2.0/GLib.NetworkAddress.parse [http://valadoc.org/gio-2.0/GLib.NetworkAddress.parse.html] under
the hood, which properly interpret IPv4 and IPv6 addresses. It will also
resolve domains and parse ports. If no port is provided, a random one will be
used.

The default when --port is provided is to listen on both IPv4 and IPv6
interfaces, or just IPv4 if IPv6 is not supported.

Use the --help flag to obtain more information about available options.

 HTTP

HTTP

libsoup-2.4 provides a libsoup-2.4/Soup.Server [http://valadoc.org/libsoup-2.4/Soup.Server.html] that you can use to
test your application or spawn workers in production.

using Valum;

var https_server = Server.new ("http", https: true);

Parameters

The implementation provides most parameters provided by libsoup-2.4/Soup.Server [http://valadoc.org/libsoup-2.4/Soup.Server.html].

	Parameter

	Default

	Description

	interface

	3003

	listening interface if using libsoup’s
old server API (<2.48)

	https

	disabled

	listen for https connections rather
than plain http

	tls-certificate

	none

	path to a file containing a PEM-encoded
certificate

	server-header

	disabled

	value to use for the “Server” header on
Messages processed by this server.

	raw-paths

	disabled

	percent-encoding in the Request-URI
path will not be automatically decoded

Notes

	if --https is specified, you must provide a TLS certificate along
with a private key

 CGI

CGI

CGI is a very simple process-based protocol that uses commonly available
process resources:

	environment variables

	standard input stream for the Request

	standard output stream for the Response

Warning

The CGI protocol expects the response to be written in the standard output:
writting there will most surely corrupt the response.

The VSGI.CGI namespace provides a basis for its derivatives protocols such
as FastCGI and SCGI and can be used along with any HTTP server.

The interpretation of the environment prioritize the CGI/1.1 [http://tools.ietf.org/html/draft-robinson-www-interface-00] specification
while providing fallbacks with values we typically found like REQUEST_URI.

Since a process is spawned per request and exits when the latter finishes,
scheduled asynchronous tasks will not be processed.

If your task involve the Request or Response in its
callback, the connection and thus the process will be kept alive as long as
necessary.

public class App : Handler {

 public override bool handle (Request req, Response res) {
 Timeout.add (5000, () => {
 res.expand_utf8 ("Hello world!");
 return Source.REMOVE;
 });
 return true;
 }
}

Server.new ("cgi", handler: new App ()).run ();

lighttpd

There is an example in examples/cgi providing a sample lighttpd [http://www.lighttpd.net/]
configuration file. Once launched, the application can be accessed at the
following address: http://127.0.0.1:3003/cgi-bin/app/.

lighttpd -D -f examples/cgi/lighttpd.conf

 FastCGI

FastCGI

FastCGI is a binary protocol that multiplexes requests over a single
connection.

VSGI uses fcgi/FastCGI [http://valadoc.org/fcgi/FastCGI.html] under the hood to provide a compliant
implementation. See Installation for more information about the
framework dependencies.

The whole request cycle is processed in a thread and dispatched in the main
context, so it’s absolutely safe to use shared states.

By default, the FastCGI implementation listens on the file descriptor 0,
which is conventionally the case when the process is spawned by an HTTP server.

The implementation only support file descriptors, UNIX socket paths and IPv4
addresses on the loopback interface.

Parameters

The only available parameter is backlog which set the depth of the listen
queue when performing the accept system call.

var fastcgi_server = Server.new ("fastcgi", backlog: 1024);

Lighttpd

Lighttpd [http://www.lighttpd.net/] can be used to develop and potentially deploy your application.
More details about the FastCGI module are provided in their wiki [http://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI].

server.document-root = var.CWD + "/build/examples/fastcgi"
server.port = 3003

server.modules += ("mod_fastcgi")

fastcgi.server = (
 "" => (
 "valum" => (
 "socket" => var.CWD + "/valum.sock",
 "bin-path" => var.CWD + "/build/examples/fastcgi/fastcgi",
 "check-local" => "disable",
 "allow-x-send-file" => "enable"
)
)
)

You can run the FastCGI example with Lighttpd:

./waf configure build --enable-examples
lighttpd -D -f examples/fastcgi/lighttpd.conf

Apache

Under Apache, there are two mods available: mod_fcgid is more likely to be
available as it is part of Apache and mod_fastcgi is developed by those who
did the FastCGI specifications.

	mod_fcgid [http://httpd.apache.org/mod_fcgid/]

	mod_fastcgi [http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html]

<Location />
 FcgidWrapper /usr/libexec/app
</Location>

Apache 2.5 provide a mod_proxy_fcgi [https://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html], which can serve FastCGI instance like
it currently does for SCGI using the ProxyPass directive.

ProxyPass fcgi://localhost:3003

Nginx

Nginx expects a process to be already spawned and will communicate with it on
a TCP port or a UNIX socket path. Read more about ngx_http_fastcgi_module [http://nginx.org/en/docs/http/ngx_http_fastcgi_module.html].

location / {
 fastcgi_pass 127.0.0.1:3003;
}

If possible, it’s preferable to spawn processes locally and serve them through
a UNIX sockets. It is safer and much more efficient considering that requests
are not going through the whole network stack.

location / {
 fastcgi_pass unix:/var/run/app.sock;
}

To spawn and manage a process, it is recommended to use a systemd unit and
socket. More details are available in Lighttpd wiki [https://redmine.lighttpd.net/projects/spawn-fcgi/wiki/Systemd]. Otherwise, it’s
possible to use the spawn-fcgi [https://redmine.lighttpd.net/projects/spawn-fcgi/wiki] tool.

 SCGI

SCGI

SCGI (Simple Common Gateway Interface) is a stream-based protocol that is
particularly simple to implement.

Note

SCGI is the recommended implementation and should be used when available as
it takes the best out of GIO asynchronous API.

The implementation uses a gio-2.0/GLib.SocketService [http://valadoc.org/gio-2.0/GLib.SocketService.html] and processes
multiple requests using non-blocking I/O.

Parameters

The only available parameter is backlog which set the depth of the listen
queue when performing the accept system call.

var scgi_server = Server.new ("scgi", backlog: 1024);

Lighttpd

Similarly to FastCGI, Lighttpd can be used to spawn and serve SCGI
processes.

server.document-root = var.CWD + "/build/examples/scgi"
server.port = 3003

server.modules += ("mod_scgi")

scgi.server = (
 "" => (
 "valum" => (
 "socket" => var.CWD + "/valum.sock",
 "bin-path" => var.CWD + "/build/examples/scgi/scgi",
 "check-local" => "disable",
)
)
)

Apache

Apache can serve SCGI instances with mod_proxy_scgi [https://httpd.apache.org/docs/2.4/mod/mod_proxy_scgi.html].

ProxyPass / scgi://[::]:3003

Nginx

Nginx support the SCGI protocol with ngx_http_scgi_module [http://nginx.org/en/docs/http/ngx_http_scgi_module.html<Paste>] and can only pass
requests over TCP/IP and UNIX domain sockets.

location / {
 scgi_pass [::]:3003;
}

 Router

Router

Router is the core component of Valum. It dispatches request to the right
handler and processes certain error conditions described in
Redirection and Error.

The router is constituted of a sequence of Route objects which may or may
not match incoming requests and perform the process described in their
handlers.

Route

The most basic and explicit way of attaching a handler is Router.route,
which attach the provided Route object to the sequence.

app.route (new RuleRoute (Method.GET, "/", null, () => {}));

Route are simple objects which combine a matching and handling processes. The
following sections implicitly treat of route objects such such as RuleRoute
and RegexRoute.

Method

New in version 0.3.

The Method flag provide a list of HTTP methods and some useful masks used
into route definitions.

	Flag

	Description

	Method.SAFE

	safe methods

	Method.IDEMPOTENT

	idempotent methods (e.g. SAFE and PUT)

	Method.CACHEABLE

	cacheable methods (e.g. HEAD, GET and POST)

	Method.ALL

	all standard HTTP methods

	Method.OTHER

	any non-standard HTTP methods

	Method.ANY

	anything, including non-standard methods

	Method.PROVIDED

	indicate that the route provide its methods

	Method.META

	mask for all meta flags like Method.PROVIDED

Note

Safe, idempotent and cacheable methods are defined in section 4.2 of RFC 7231 [https://tools.ietf.org/html/rfc7231#section-4.2].

Using a flag makes it really convenient to capture multiple methods with the
| binary operator.

app.rule (Method.GET | Method.POST, "/", (req, res) => {
 // matches GET and POST
});

Method.GET is defined as Method.ONLY_GET | Method.HEAD such that
defining the former will also provide a HEAD implementation. In general,
it’s recommended to check the method in order to skip a body that won’t be
considered by the user agent.

app.get ("/", () => {
 res.headers.set_content_type ("text/plain", null);
 if (req.method == Request.HEAD) {
 return res.end (); // skip unnecessary I/O
 }
 return res.expand_utf8 ("Hello world!");
});

To provide only the GET part, use Method.ONLY_GET.

app.rule (Method.ONLY_GET, "/", () => {
 res.headers.set_content_type ("text/plain", null);
 return res.expand_utf8 ("Hello world!");
});

Per definition, POST is considered cacheable, but if it’s not desirable, it
may be removed from the mask with the unary ~ operator.

app.rule (Method.CACHEABLE & ~Method.POST, "/", () => {
 res.headers.set_content_type ("text/plain", null);
 return res.expand_utf8 ("Hello world!");
});

Non-standard method

To handle non-standard HTTP method, use the Method.OTHER along with an
explicit check.

app.method (Method.OTHER, "/rule", (req, res) => {
 if (req.method != "CUSTOM")
 return next ();
});

Reverse

New in version 0.3.

Some route implementations can be reversed into URLs by calling
Route.to_url or the alternative Route.to_urlv and
Route.to_url_from_hash. It may optionally take parameters which, in the
case of the rule-based route, correspond to the named captures.

Introspection

The router introspect the route sequence to determine what methods are allowed
for a given URI and thus produce a nice Allow header. To mark a method as
provided, the Method.PROVIDED flag has to be used. This is automatically
done for the helpers and the Router.rule function described below.

Additionally, the OPTIONS and TRACE are automatically handled if not
specified for a path. The OPTIONS will produce a Allow header and
TRACE will feedback the request into the response payload.

Named route

New in version 0.3.

Few of the helpers provided by the router also accept an additional parameter
to name the created route object. This can then be used to generate reverse
URLs with Router.url_for.

Note

This feature is only support for the rule-based and path-based route
implementations.

var app = new Router ();

app.get ("/", (req, res) => {
 return res.expand_utf8 ("Hello world! %s".printf (app.url_for ("home")));
}, "home");

Likewise to to_url, it’s possible to pass additional parameters as varidic
arguments. The following example show how one can serve relocatable static
resources and generate URLs in a Compose [https://github.com/arteymix/compose] template.

using Compose.HTML5;
using Valum;
using Valum.Static;

var app = new Router ();

app.get ("/", () => {
 return res.expand_utf8 (
 html (
 head (
 title ("Hello world!"),
 link ("stylesheet",
 app.url_for ("static",
 "path", "bootstrap/dist/css/bootstrap.min.css"))),
 body ()));
});

app.get ("/static/<path>", serve_from_path ("static"), "static");

Other helpers are provided to pass a GLib.HashTable via Router.url_for_hash
or explicit varidic arguments via Router.url_for_valist.

Note

Vala also support the : syntax for passing varidic argument in
a key-value style if the key is a glib-2.0/string [http://valadoc.org/glib-2.0/string.html] which is the
case for Router.url_for and Route.to_url.

var bootstrap_url = app.url_for ("static", path: "bootstrap/dist/css/bootstrap.min.css");

Once

New in version 0.3.

To perform initialization or just call some middleware once, use
Router.once.

Gda.Connection database;

app.once ((req, res, next) => {
 database = new Gda.Connection.from_string ("mysql", ...);
 return next ();
});

app.get ("/", (req, res) => {
 return res.expand_utf8 ("Hello world!");
});

Use

New in version 0.3.

The simplest way to attach a handler is Router.use, which unconditionally
apply the route on the request.

app.use ((req, res, next) => {
 var params = new HashTable<string, string> (str_hash, str_equal);
 params["charset"] = "iso-8859-1";
 res.headers.set_content_type ("text/xhtml+xml", params);
 return next ();
});

It is typically used to mount a Middlewares on the router.

Asterisk

New in version 0.3.

The special * URI is handled by the Router.asterisk helper. It is
typically used along with the OPTIONS method to provide a self-description
of the Web service or application.

app.asterisk (Method.OPTIONS, () => {
 return true;
});

Rule

Changed in version 0.3: Rule helpers (e.g. get, post, rule) must explicitly be provided
with a leading slash.

The rule syntax has been greatly improved to support groups, optionals and
wildcards.

The de facto way of attaching handler callbacks is based on the rule system.
The Router.rule as well as all HTTP method helpers use it.

app.rule (Method.ALL, "/rule" (req, res) => {
 return true;
});

The syntax for rules is given by the following EBNF grammar:

rule = piece | parameter | group | optional | wildcard, [rule];
group = '(', rule, ')';
optional = (piece | parameter | group), '?';
wildcard = '*';
parameter = '<', [type, ':'], name, '>'; (* considered as a terminal *)
type = ? any sequence of word character ?;
name = ? any sequence of word character ?;
piece = ? any sequence of URL-encoded character ?;

Remarks

	a piece is a single character, so /users/? only indicates that the /
is optional

	the wildcard * matches anything, just like the .* regular expression

The following table show valid rules and their corresponding regular
expressions. Note that rules are matching the whole path as they are
automatically anchored.

	Rule

	Regular expression

	/user

	^/user$

	/user/<id>

	^/user/(?<id>\w+)$

	/user/<int:id>

	^/user/(?<id>\d+)$

	/user(/<int:id>)?

	^/user(?:/(?<id>\d+))?$

Types

Valum provides built-in types initialized in the Router constructor. The
following table details these types and what they match.

	Type

	Regex

	Description

	int

	\d+

	matches non-negative integers like a
database primary key

	string

	\w+

	matches any word character

	path

	(?:\.?[\w/-\s/])+

	matches a piece of route including
slashes, but not ..

Undeclared types default to string, which matches any word characters.

It is possible to specify or overwrite types using the types map in
Router. This example will define the path type matching words and
slashes using a regular expression literal.

app.register_type ("path", new Regex ("[\w/]+", RegexCompileFlags.OPTIMIZE));

If you would like ìnt to match negatives integer, you may just do:

app.register_type ("int", new Regex ("-?\d+", RegexCompileFlags.OPTIMIZE));

Rule parameters are available from the routing context by their name.

app.get ("/<controller>/<action>", (req, res, next, context) => {
 var controller = context["controller"].get_string ();
 var action = context["action"].get_string ();
});

Helpers

Helpers for the methods defined in the HTTP/1.1 protocol and the extra
TRACE methods are included. The path is matched according to the rule
system defined previously.

app.get ("/", (req, res) => {
 return res.expand_utf8 ("Hello world!");
});

The following example deal with a POST request providing using
libsoup-2.4/Soup.Form [http://valadoc.org/libsoup-2.4/Soup.Form.html] to decode the payload.

app.post ("/login", (req, res) => {
 var data = Soup.Form.decode (req.flatten_utf8 ());

 var username = data["username"];
 var password = data["password"];

 // assuming you have a session implementation in your app
 var session = new Session.authenticated_by (username, password);

 return true;
});

Regular expression

Changed in version 0.3: The regex helper must be provided with an explicit leading slash.

If the rule system does not suit your needs, it is always possible to use
regular expression. Regular expression will be automatically scoped, anchored
and optimized.

app.regex (Method.GET, new Regex ("/home/?", RegexCompileFlags.OPTIMIZE), (req, res) => {
 return res.body.write_all ("Matched using a regular expression.".data, true);
});

Named captures are registered on the routing context.

app.regex (new Regex ("/(?<word>\w+)", RegexCompileFlags.OPTIMIZE), (req, res, next, ctx) => {
 var word = ctx["word"].get_string ();
});

Matcher callback

Request can be matched by a simple callback typed by the MatcherCallback
delegate.

app.matcher (Method.GET, (req) => { return req.uri.get_path () == "/home"; }, (req, res) => {
 // matches /home
});

Scoping

Changed in version 0.3: The scope feature does not include a slash, instead you should scope with
a leading slash like shown in the following examples.

Scoping is a powerful prefixing mechanism for rules and regular expressions.
Route declarations within a scope will be prefixed by <scope>.

The Router maintains a scope stack so that when the program flow enter
a scope, it pushes the fragment on top of that stack and pops it when it exits.

app.scope ("/admin", (admin) => {
 // admin is a scoped Router
 app.get ("/users", (req, res) => {
 // matches /admin/users
 });
});

app.get ("/users", (req, res) => {
 // matches /users
});

To literally mount an application on a prefix, see the
Basepath middleware.

Context

New in version 0.3.

During the routing, states can obtained from a previous handler or passed to
the next one using the routing context.

Keys are resolved recursively in the tree of context by looking at the parent
context if it’s missing.

app.get ("/", (req, res, next, context) => {
 context["some key"] = "some value";
 return next ();
});

app.get ("/", (req, res, next, context) => {
 var some_value = context["some key"]; // or context.parent["some key"]
 return return res.body.write_all (some_value.data, null);
});

Next

Changed in version 0.3: The next continuation does not take the request and response objects as
parameter. To perform transformation, see Converters and
Middlewares.

The handler takes a callback as an optional third argument. This callback is
a continuation that will continue the routing process to the next matching
route.

app.get ("/", (req, res, next) => {
 return next (); // keep routing
});

app.get ("/", (req, res) => {
 // this is invoked!
});

Warning

The next continuation can only be called from within the handler
callback. Since it is not maked as owned, the reference does not
persist beyond the function return.

The next continuation can only be called synchronously. This is only
temporary and an eventual release will revamp the whole routing when
asynchronous delegates will be part of the Vala language (see bug 604827 [https://bugzilla.gnome.org/show_bug.cgi?id=604827] for
details).

Sequence

New in version 0.3.

The Sequence middleware should be used to chain handling
callbacks.

app.get ("/", sequence ((req, res, next) => {
 return next ();
}, (req, res) => {
 return res.expand_utf8 ("Hello world!");
}));

Error handling

New in version 0.2.1: Prior to this release, any unhandled error would crash the main loop
iteration.

Changed in version 0.3: Error and status codes are now handled with a catch block or using the
Status middleware.

Changed in version 0.3: The default handling is not ensured by the Basic
middleware.

Changed in version 0.3: Thrown errors are forwarded to VSGI, which process them essentially the
same way. See VSGI for more details.

Similarly to status codes, errors are propagated in the HandlerCallback and
NextCallback delegate signatures and can be handled in a catch block.

app.use (() => {
 try {
 return next ();
 } catch (IOError err) {
 res.status = 500;
 return res.expand_utf8 (err.message);
 }
});

app.get ("/", (req, res) => {
 throw new IOError.FAILED ("I/O failed some some reason.");
});

Thrown status code can also be caught this way, but it’s much more convenient
to use the Status middleware.

Subrouting

Since VSGI.ApplicationCallback is type compatible with HandlerCallback,
it is possible to delegate request handling to another VSGI-compliant
application.

In particular, it is possible to treat Router.handle like any handling
callback.

Note

This feature is a key design of the router and is intended to be used for
a maximum inter-operability with other frameworks based on VSGI.

The following example delegates all GET requests to another router which
will process in isolation with its own routing context.

var app = new Router ();
var api = new Router ();

// delegate all GET requests to api router
app.get ("*", api.handle);

One common pattern with subrouting is to attempt another router and fallback on
next.

var app = new Router ();
var api = new Router ();

app.get ("/some-resource", (req, res) => {
 return api.handle (req, res) || next ();
});

Cleaning up route logic

Performing a lot of route bindings can get messy, particularly if you want to
split an application several reusable modules. Encapsulation can be achieved by
subclassing Router and performing initialization in a construct block:

public class AdminRouter : Router {

 construct {
 rule (Method.GET, "/admin/user", view);
 rule (Method.GET | Method.POST, "/admin/user/<int:id>", edit);
 }

 public bool view (Request req, Response res) {
 return render_template ("users", Users.all ());
 }

 public bool edit (Request req, Response res) {
 var user = User.find (ctx["id"]);
 if (req.method == "POST") {
 user.values (Soup.Form.decode (req.flatten_utf8 ()));
 user.update ();
 }
 return render_template ("user", user);
 }
}

Using subrouting, it can be assembled to a parent router given a rule (or any
matching process described in this document). This way, incoming request having
the /admin/ path prefix will be delegated to the admin router.

var app = new Router ();

app.rule (Method.ALL, "/admin/*", new AdminRouter ().handle);

The Basepath middleware provide very handy path isolation so
that the router can be simply written upon the leading / and rebased on any
basepath. In that case, we can strip the leading /admin in router’s rules.

var app = new Router ();

// captures '/admin/users' and '/admin/user/<int:id>'
app.use (basepath ("/admin", new AdminRouter ().handle));

 Redirection and Error

Redirection and Error

Redirection, client and server errors are handled via a simple exception [https://wiki.gnome.org/Projects/Vala/Manual/Errors]
mechanism.

In a HandlerCallback, you may throw any of Informational, Success,
Redirection, ClientError and ServerError predefined error domains
rather than setting the status and returning from the function.

It is possible to register a handler on the Router to handle a specific
status code.

app.use ((req, res, next) => {
 try {
 return next ();
 } catch (Redirection.PERMANENT red) {
 // handle a redirection...
 }
}));

Default handling

Changed in version 0.3: Default handling is not assured by the Basic middleware.

The Router can be configured to handle raised status by setting the
response status code and headers appropriately.

app.use (basic ());

app.get ("/", () => {
 throw new ClientError.NOT_FOUND ("The request URI '/' was not found.");
});

To handle status more elegantly, see the Status middleware.

app.use (status (Status.NOT_FOUND, (req, res, next, ctx, err) => {
 // handle 'err' properly...
}));

The error message may be used to fill a specific Response headers
or the response body. The following table describe how the router deal with
these cases.

	Status

	Header

	Description

	Informational.SWITCHING_PROTOCOLS

	Upgrade

	Identifier of the protocol to use

	Success.CREATED

	Location

	URL to the newly created resource

	Success.PARTIAL_CONTENT

	Range

	Range of the delivered resource in bytes

	Redirection.MOVED_PERMANENTLY

	Location

	URL to perform the redirection

	Redirection.FOUND

	Location

	URL of the found resource

	Redirection.SEE_OTHER

	Location

	URL of the alternative resource

	Redirection.USE_PROXY

	Location

	URL of the proxy

	Redirection.TEMPORARY_REDIRECT

	Location

	URL to perform the redirection

	ClientError.UNAUTHORIZED

	WWW-Authenticate

	Challenge for authentication

	ClientError.METHOD_NOT_ALLOWED

	Allow

	Comma-separated list of allowed methods

	ClientError.UPGRADE_REQUIRED

	Upgrade

	Identifier of the protocol to use

The following errors does not produce any payload:

	Information.SWITCHING_PROTOCOLS

	Success.NO_CONTENT

	Success.RESET_CONTENT

	Success.NOT_MODIFIED

For all other domains, the message will be used as a text/plain payload
encoded with UTF-8.

The approach taken by Valum is to support at least all status defined by
libsoup-2.4 and those defined in RFC documents. If anything is missing, you can
add it and submit us a pull request.

Informational (1xx)

Informational status are used to provide a in-between response for the
requested resource. The Response body must remain empty.

Informational status are enumerated in Informational error domain.

Success (2xx)

Success status tells the client that the request went well and provide
additional information about the resource. An example would be to throw
a Success.CREATED error to provide the location of the newly created
resource.

Successes are enumerated in Success error domain.

app.get ("/document/<int:id>", (req, res) => {
 // serve the document by its identifier...
});

app.put ("/document", (req, res) => {
 // create the document described by the request
 throw new Success.CREATED ("/document/%u".printf (id));
});

Redirection (3xx)

To perform a redirection, you have to throw a Redirection error and use the
message as a redirect URL. The Router will automatically set the
Location header accordingly.

Redirections are enumerated in Redirection error domain.

app.get ("/user/<id>/save", (req, res) => {
 var user = User (req.params["id"]);

 if (user.save ())
 throw new Redirection.MOVED_TEMPORAIRLY ("/user/%u".printf (user.id));
});

Client (4xx) and server (5xx) error

Like for redirections, client and server errors are thrown. Errors are
predefined in ClientError and ServerError error domains.

app.get ("/not-found", (req, res) => {
 throw new ClientError.NOT_FOUND ("The requested URI was not found.");
});

Errors in next

The next continuation is designed to throw these specific errors so that
the Router can handle them properly.

app.use ((req, res, next) => {
 try {
 return next ();
 } catch (ClientError.NOT_FOUND err) {
 // handle a 404...
 }
});

app.get ("/", (req, res, next) => {
 return next (); // will throw a 404
});

app.get ("/", (req, res) => {
 throw new ClientError.NOT_FOUND ("");
});

 Middlewares

Middlewares

Middlewares are reusable pieces of processing that can perform various work
from authentication to the delivery of a static resource.

	Authenticate

	Basepath

	Basic

	Content Negotiation
	Preference and quality

	Error handling

	Custom comparison

	Helpers

	Decode

	Safely

	Sequence

	Server-Sent Events
	Multi-line messages

	Static Resource Delivery
	File backend
	Helpers

	Resource backend

	Compression

	Content type detection

	Deal with missing resources

	Options
	ETag

	Last-Modified

	X-Sendfile

	Public caching

	Expose missing permissions

	Status

	Subdomain
	Strict

	Skip labels

The typical way of declaring them involve closures. It is parametrized and
returned to perform a specific task:

public HandlerCallback middleware (/* parameters here */) {
 return (req, res, next, ctx) => {
 var referer = req.headers.get_one ("Referer");
 ctx["referer"] = new Soup.URI (referer);
 return next ();
 };
}

The following example shows a middleware that provide a compressed stream over
the Response body.

app.use ((req, res, next) => {
 res.headers.append ("Content-Encoding", "gzip");
 res.convert (new ZLibCompressor (ZlibCompressorFormat.GZIP));
 return next ();
});

app.get ("/home", (req, res) => {
 return res.expand_utf8 ("Hello world!"); // transparently compress the output
});

If this is wrapped in a function, which is typically the case, it can even be
used directly from the handler.

HandlerCallback compress = (req, res, next) => {
 res.headers.append ("Content-Encoding", "gzip");
 res.convert (new ZLibCompressor (ZlibCompressorFormat.GZIP));
 return next ();
};

app.get ("/home", compress);

app.get ("/home", (req, res) => {
 return res.expand_utf8 ("Hello world!");
});

Alternatively, a middleware can be used directly instead of being attached to
a valum-0.3/Valum.Route [http://valadoc.org/valum-0.3/Valum.Route.html], the processing will happen in
a valum-0.3/Valum.NextCallback [http://valadoc.org/valum-0.3/Valum.NextCallback.html].

app.get ("/home", (req, res, next, context) => {
 return compress (req, res, (req, res) => {
 return res.expand_utf8 ("Hello world!");
 }, new Context.with_parent (context));
});

Forward

New in version 0.3.

One typical middleware pattern is to take a continuation that is forwarded on
success (or any other event) with a single value like it’s the case for the
Content Negotiation middlewares.

This can be easily done with valum-0.3/Valum.ForwardCallback [http://valadoc.org/T.html]. The
generic parameter specify the type of the forwarded value.

public HandlerCallback accept (string content_types, ForwardCallback<string> forward) {
 return (req, res, next, ctx) => {
 // perform content negotiation and determine 'chosen_content_type'...
 return forward (req, res, next, ctx, chosen_content_type);
 };
}

app.get ("/", accept ("text/xml; application/json", (req, res, next, ctx, content_type) => {
 // produce a response according to 'content_type'...
}));

Often, one would simply call the next continuation, so a valum-0.3/Valum.forward [http://valadoc.org/valum-0.3/Valum.forward.html]
definition is provided to do that. It is used as a default value for various
middlewares such that all the following examples are equivalent:

app.use (accept ("text/html" () => {
 return next ();
}));

app.use (accept ("text/html", forward));

app.use (accept ("text/html"));

To pass multiple values, it is preferable to explicitly declare them using
a delegate.

public delegate bool ComplexForwardCallback (Request req,
 Response res,
 NextCallback next,
 Context ctx,
 int a,
 int b) throws Error;

 Authenticate

Authenticate

The valum-0.3/Valum.authenticate [http://valadoc.org/valum-0.3/Valum.authenticate.html] middleware allow one to perform
HTTP basic authentications.

It takes three parameters:

	an vsgi-0.3/VSGI.Authentication [http://valadoc.org/vsgi-0.3/VSGI.Authentication.html] object described in HTTP authentication

	a callback to challenge a user-provided vsgi-0.3/VSGI.Authorization [http://valadoc.org/vsgi-0.3/VSGI.Authorization.html] header

	a forward callback invoked on success with the corresponding authorization
object

If the authentication fails, a 401 Unauthorized status is raised with
a WWW-Authenticate header.

app.use (authenticate (new BasicAuthentication ("realm")), (authorization) => {
 return authorization.challenge ("some password");
}, (req, res, next, ctx, username) => {
 return res.expand_utf8 ("Hello %s".printf (username));
});

To perform custom password comparison, it is best to cast the authorization
parameter and access the password directly.

public bool authenticate_user (string username, string password) {
 // authenticate the user against the database...
}

app.use (authenticate (new BasicAuthentication ("realm")), (authorization) => {
 var basic_authorization = authorization as BasicAuthorization;
 return authenticate_user (basic_authorization.username, basic_authorization.password);
});

 Basepath

Basepath

The valum-0.3/Valum.basepath [http://valadoc.org/valum-0.3/Valum.basepath.html] middleware allow a better isolation
when composing routers by stripping a prefix on the Request URI.

The middleware strips and forwards requests which match the provided base path.
If the resulting path is empty, it fallbacks to a root /.

Error which use their message as a Location header are automatically
prefixed by the base path.

var user = new Router ();

user.get ("/<int:id>", (req, res) => {
 // ...
});

user.post ("/", (req, res) => {
 throw new Success.CREATED ("/5");
});

app.use (basepath ("/user", user.handle));

app.status (Soup.Status.CREATED, (req, res) => {
 assert ("/user/5" == context["message"]);
});

If next is called while forwarding or an error is thrown, the original path
is restored.

user.get ("/<int:id>", (req, res, next) => {
 return next (); // path is '/5'
});

app.use (basepath ("/user", user.handle));

app.use ((req, res) => {
 // path is '/user/5'
});

One common pattern is to provide a path-based fallback when using the
Subdomain middleware.

app.use (subdomain ("api", api.handle));
app.use (basepath ("/api", api.handle));

 Basic

Basic

New in version 0.3.

Previously know under the name of default handling, the valum-0.3/Valum.basic [http://valadoc.org/valum-0.3/Valum.basic.html]
middleware provide a conforming handling of raised status codes as described in
the Redirection and Error document.

It aims at providing sane defaults for a top-level middleware.

app.use (basic ());

app.get ("/", () => {
 throw new Success.CREATED ("/resource/id");
});

If an error is caught, it will perform the following tasks:

	assign an appropriate status code (500 for other errors)

	setup required headers (eg. Location for a redirection)

	produce a payload based on the message if required and not already used for
a header

The payload will have the text/plain content type encoded with UTF-8.

For privacy and security reason, non-status errors (eg. gio-2.0/GLib.IOError [http://valadoc.org/gio-2.0/GLib.IOError.html])
will not be used for the payload. To enable that for specific errors, it’s
possible to convert them into into a raised status, preferably a 500 Internal Server Error.

app.use (() => {
 try {
 return next ();
 } catch (IOError err) {
 throw new ServerError.INTERNAL_SERVER_ERROR (err.message);
 }
})

 Content Negotiation

Content Negotiation

Negotiating the resource representation is an essential part of the HTTP
protocol.

The negotiation process is simple: expectations are provided for a specific
header, if they are met, the processing is forwarded with the highest quality
value, otherwise a 406 Not Acceptable status is raised.

using Valum.ContentNegotiation;

app.get ("/", negotiate ("Accept", "text/html, text/html+xml",
 (req, res, next, stack, content_type) => {
 // produce a response based on 'content_type'
}));

Or directly by using the default forward callback:

app.use (negotiate ("Accept", "text/html"));

// all route declaration may assume that the user agent accept 'text/html'

Preference and quality

Additionally, the server can state the quality of each expectation. The
middleware will maximize the product of quality and user agent preference with
respect to the order of declaration and user agent preferences if it happens to
be equal.

If, for instance, you would serve a XML document that is just poorly converted
from a JSON source, you could state it by giving it a low q value. If the
user agent as a strong preference the former and a low preference for the
latter (eg. Accept: text/xml; application/json; q=0.1)), it will be served
the version with the highest product (eg. 0.3 * 1 > 1 * 0.3).

app.get ("/", negotiate ("Accept", "application/json;, text/xml; q=0.3",
 (req, res, next, stack, content_type) => {
 // produce a response based on 'content_type'
}));

Error handling

The Status middleware may be used to handle the possible 406 Not Acceptable
error raised if no expectation can be satisfied.

app.use (status (Soup.Status.NOT_ACCEPTABLE, () => {
 // handle '406 Not Acceptable' here
}));

app.use (negotiate ("Accept", "text/xhtml; text/html", () => {
 // produce appropriate resource
}));

Custom comparison

A custom comparison function can be provided to valum-0.3/Valum.negotiate [http://valadoc.org/valum-0.3/Valum.negotiate.html]
in order to handle wildcards and other edge cases. The user agent pattern is
the first argument and the expectation is the second.

Warning

Most of the HTTP/1.1 specification about headers is case-insensitive, use
libsoup-2.4/Soup.str_case_equal [http://valadoc.org/libsoup-2.4/Soup.str_case_equal.html] to perform comparisons.

app.use (negotiate ("Accept",
 "text/xhtml",
 () => { return true; },
 (a, b) => {
 return a == "*" || Soup.str_case_equal (a, b);
});

Helpers

For convenience, helpers are provided to handle common headers:

	Middleware

	Header

	Edge cases

	accept

	Content-Type

	/, type/* and type/subtype1+subtype2

	accept_charset

	Content-Type

	*

	accept_encoding

	Content-Encoding

	*

	accept_language

	Content-Language

	missing language type

	accept_ranges

	Content-Ranges

	none

The valum-0.3/Valum.accept [http://valadoc.org/valum-0.3/Valum.accept.html] middleware will assign the media type and
preserve all other parameters.

If multiple subtypes are specified (e.g. application/vnd.api+json), the
middleware will check if the subtypes accepted by the user agent form a subset.
This is useful if you serve a specified JSON document format to a client which
only state to accept JSON and does not care about the specification itself.

accept ("text/html; text/xhtml", (req, res, next, ctx, content_type) => {
 switch (content_type) {
 case "text/html":
 return produce_html ();
 case "text/xhtml":
 return produce_xhtml ();
 }
});

The valum-0.3/Valum.accept_encoding [http://valadoc.org/valum-0.3/Valum.accept_encoding.html] middleware will convert the
Response if it’s either gzip or deflate.

accept ("gzip; deflate", (req, res, next, ctx, encoding) => {
 res.expand_utf8 ("Hello world! (compressed with %s)".printf (encoding));
});

The valum-0.3/Valum.accept_charset [http://valadoc.org/valum-0.3/Valum.accept_charset.html] middleware will set the
charset parameter of the Content-Type header, defaulting to
application/octet-stream if undefined.

 Decode

Decode

The valum-0.3/Valum.decode [http://valadoc.org/valum-0.3/Valum.decode.html] middleware is used to unapply various
content codings.

app.use (decode ());

app.post ("/", (req, res) => {
 var posted_data = req.flatten_utf8 ();
});

It is typically put at the top of an application.

	Encoding

	Action

	deflate

	gio-2.0/GLib.ZlibDecompressor [http://valadoc.org/gio-2.0/GLib.ZlibDecompressor.html]

	gzip and x-gzip

	gio-2.0/GLib.ZlibDecompressor [http://valadoc.org/gio-2.0/GLib.ZlibDecompressor.html]

	identity

	nothing

If an encoding is not supported, a 501 Not Implemented is raised and
remaining encodings are reapplied on the request.

To prevent this behavior, the valum-0.3/Valum.DecodeFlags.FORWARD_REMAINING_ENCODINGS [http://valadoc.org/valum-0.3/Valum.DecodeFlags.FORWARD_REMAINING_ENCODINGS.html]
flag can be passed to forward unsupported content codings.

app.use (decode (DecodeFlags.FORWARD_REMAINING_ENCODINGS));

app.use (() => {
 if (req.headers.get_one ("Content-Encoding") == "br") {
 req.headers.remove ("Content-Encoding");
 req.convert (new BrotliDecompressor ());
 }
 return next ();
});

app.post ("/", (req, res) => {
 var posted_data = req.flatten_utf8 ();
});

 Safely

Safely

Yet very simple, the valum-0.3/Valum.safely [http://valadoc.org/valum-0.3/Valum.safely.html] middleware provide
a powerful way of discovering possible error conditions and handle them
locally.

Only status defined in Redirection and Error are leaked: the compiler
will warn for all other unhandled errors.

app.get ("/", safely ((req, res, next, ctx) => {
 try {
 res.expand_utf8 ("Hello world!");
 } catch (IOError err) {
 critical (err.message);
 return false;
 }
});

 Sequence

Sequence

New in version 0.3.

The valum-0.3/Valum.sequence [http://valadoc.org/valum-0.3/Valum.sequence.html] middleware provide a handy way of
chaining middlewares.

app.post ("/", sequence (decode (), (req, res) => {
 // handle decoded payload
}));

To chain more than two middlewares, one can chain a middleware with a sequence.

app.get ("/admin", sequence ((req, res, next) => {
 // authenticate user...
 return next ();
}, sequence ((req, res, next) => {
 // produce sensitive data...
 return next ();
}, (req, res) => {
 // produce the response
})));

Vala does not support varidic delegate arguments, which would be much more
convenient to describe a sequence.

 Server-Sent Events

Server-Sent Events

Valum provides a middleware for the HTML5 Server-Sent Events [http://www.w3.org/TR/eventsource/] protocol to
stream notifications over a persistent connection.

The valum-0.3/Valum.ServerSentEvents.stream_events [http://valadoc.org/valum-0.3/Valum.ServerSentEvents.stream_events.html] function creates
a handling middleware and provide a valum-0.3/Valum.ServerSentEvents.SendEventCallback [http://valadoc.org/valum-0.3/Valum.ServerSentEvents.SendEventCallback.html]
callback to transmit the actual events.

using Valum;
using Valum.ServerSentEvents;

app.get ("sse", stream_events ((req, send) => {
 send (null, "some data");
}));

var eventSource = new EventSource ("/sse");

eventSource.onmessage = function(message) {
 console.log (message.data); // displays 'some data'
};

Multi-line messages

Multi-line messages are handled correctly by splitting the data into into
multiple data: chunks.

send (null, "some\ndata");

data: some
data: data

 Static Resource Delivery

Static Resource Delivery

Middlewares in the valum-0.3/Valum.Static [http://valadoc.org/valum-0.3/Valum.Static.html] namespace ensure delivery
of static resources.

using Valum.Static;

As of convention, all middleware use the path context key to resolve the
resource to be served. This can easily be specified using a rule parameter with
the path type.

For more flexibility, one can compute the path value and pass the control
with next. The following example obtains the key from the HTTP query:

app.get ("/static", sequence ((req, res, next, ctx) => {
 ctx["path"] = req.lookup_query ("path") ?? "index.html";
 return next ();
}, serve_from_file (File.new_for_uri ("resource://"))));

If a HEAD request is performed, the payload will be omitted.

File backend

The valum-0.3/Valum.Static.serve_from_file [http://valadoc.org/valum-0.3/Valum.Static.serve_from_file.html] middleware will serve
resources relative to a gio-2.0/GLib.File [http://valadoc.org/gio-2.0/GLib.File.html] instance.

app.get ("/static/<path:path>", serve_from_file (File.new_for_path ("static")));

To deliver from the global resources, use the resource:// scheme.

app.get ("/static/<path:path>", serve_from_file (File.new_for_uri ("resource://static")));

Before being served, each file is forwarded to make it possible to modify
headers more specifically or raise a last-minute error.

Once done, invoke the next continuation to send over the content.

app.get ("/static/<path:path>", serve_from_file (File.new_for_path ("static"),
 ServeFlags.NONE,
 (req, res, next, ctx, file) => {
 var user = ctx["user"] as User;
 if (!user.can_access (file)) {
 throw new ClientError.FORBIDDEN ("You cannot access this file.")
 }
 return next ();
}));

Helpers

Two helpers are provided for File-based delivery: valum-0.3/Valum.Static.serve_from_path [http://valadoc.org/valum-0.3/Valum.Static.serve_from_path.html]
and valum-0.3/Valum.Static.serve_from_uri [http://valadoc.org/valum-0.3/Valum.Static.serve_from_uri.html].

app.get ("/static/<path:path>", serve_from_path ("static/<path:path>"));

app.get ("/static/<path:path>", serve_from_uri ("static/<path:path>"));

Resource backend

The valum-0.3/Valum.Static.serve_from_resource [http://valadoc.org/valum-0.3/Valum.Static.serve_from_resource.html] middleware is
provided to serve a resource bundle (see gio-2.0/GLib.Resource [http://valadoc.org/gio-2.0/GLib.Resource.html]) from
a given prefix. Note that the prefix must be a valid path, starting and ending
with a slash / character.

app.get ("/static/<path:path>", serve_from_resource (Resource.load ("resource"),
 "/static/"));

Compression

To compress static resources, it is best to negotiate a compression encoding
with a Content Negotiation middleware: body stream and headers will be
set properly if the encoding is supported.

Using the identity encoding provide a fallback in case the user agent does
not want compression and prevent a 406 Not Acceptable from being raised.

app.get ("/static/<path:path>", sequence (accept_encoding ("gzip, deflate, identity"),
 serve_from_path ("static")));

Content type detection

The middlewares will detect the content type based on the file name and
a lookup on its content.

Content type detection, based on the file name and a small data lookup, is
performed with GLib.ContentType [http://valadoc.org/#!api=gio-2.0/GLib.ContentType].

Deal with missing resources

If a resource is not available (eg. the file does not exist), the control will
be forwarded to the next route.

One can use that behaviour to implement a cascading failover with the
Sequence middleware.

app.get ("/static/<path:path", sequence (serve_from_path ("~/.local/app/static"),
 serve_from_path ("/usr/share/app/static")));

To generate a 404 Not Found, just raise a valum-0.3/Valum.ClientError.NOT_FOUND [http://valadoc.org/valum-0.3/Valum.ClientError.NOT_FOUND.html]
as described in Redirection and Error.

app.use (basic ());

app.get ("/static/<path:path>", sequence (serve_from_uri ("resource://"),
 (req, res, next, ctx) => {
 throw new ClientError.NOT_FOUND ("The static resource '%s' were not found.",
 ctx["path"]);
}));

Options

Options are provided as flags from the valum-0.3/Valum.Static.ServeFlags [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.html]
enumeration.

ETag

If the valum-0.3/Valum.Static.ServeFlags.ENABLE_ETAG [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_ETAG.html] is specified,
a checksum of the resource will be generated in the ETag header.

If set and available, it will have precedence over valadoc:valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED
described below.

Last-Modified

Unlike ETag, this caching feature is time-based and will indicate the last
modification on the resource. This is only available for some File backend and
will fallback to ETag if enabled as well.

Specify the valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED.html]
to enable this feature.

X-Sendfile

If the application run behind a HTTP server which have access to the resources,
it might be preferable to let it serve them directly with valum-0.3/Valum.Static.ServeFlags.X_SENDFILE [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.X_SENDFILE.html].

app.get ("/static/<path:path>", serve_from_path ("static", ServeFlags.X_SENDFILE));

If files are not locally available, they will be served directly.

Public caching

The valum-0.3/Valum.Static.ServeFlags.ENABLE_CACHE_CONTROL_PUBLIC [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_CACHE_CONTROL_PUBLIC.html]
let intermediate HTTP servers cache the payload by attaching a Cache-Control: public
header to the response.

Expose missing permissions

The valum-0.3/Valum.Static.ServeFlags.FORBID_ON_MISSING_RIGHTS [http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.FORBID_ON_MISSING_RIGHTS.html] will
trigger a 403 Forbidden if rights are missing to read a file. This is not
a default as it may expose information about the existence of certain files.

 Status

Status

Thrown status codes (see Redirection and Error) can be handled with the
valum-0.3/Valum.status [http://valadoc.org/valum-0.3/Valum.status.html] middleware.

The received Request and Response object are in
the same state they were when the status was thrown. An additional parameter
provide access to the actual glib-2.0/GLib.Error [http://valadoc.org/glib-2.0/GLib.Error.html] object.

app.use (status (Soup.Status.NOT_FOUND, (req, res, next, context, err) => {
 // produce a 404 page...
 var message = err.message;
});

To jump to the next status handler found upstream in the routing queue, just
throw the error. If the error can be resolved, you might want to try next
once more.

app.status (Soup.Status.NOT_FOUND, (req, res) => {
 res.status = 404;
 return res.expand_utf8 ("Not found!");
});

app.status (Soup.Status.NOT_FOUND, (req, res, next, ctx, err) => {
 return next (); // try to route again or jump upstream
});

app.use (() => {
 throw new ClientError.NOT_FOUND ("");
});

If an error is not handled, it will eventually be caught by the default status
handler, which produce a minimal response.

// turns any 404 into a permanent redirection
app.status (Soup.Status.NOT_FOUND, (req, res) => {
 throw new Redirection.PERMANENT ("http://example.com");
});

 Subdomain

Subdomain

The valum-0.3/Valum.subdomain [http://valadoc.org/valum-0.3/Valum.subdomain.html] middleware matches
Request which subdomain is conform to expectations.

Note

Domains are interpreted in their semantical right-to-left order and matched
as suffix.

The pattern is specified as the first argument. It may contain asterisk *
which specify that any supplied label satisfy that position.

app.use (subdomain ("api", (req, res) => {
 // match domains like 'api.example.com' and 'v1.api.example.com'
}));

app.use (subdomain ("*.user", (req, res) => {
 // match at least two labels: the first can be anything and the second
 // is exactly 'user'
}));

The matched subdomain labels are extracted and passed by parameter.

app.use (subdomain ("api", (req, res, next, ctx, subdomains) => {
 // 'subdomains' could be 'api' or 'v1.api'
}));

This middleware can be used along with subrouting to mount any Router
on a specific domain pattern.

var app = new Router ();
var api = new Router ();

app.use (subdomain ("api", api.handle));

Strict

There is two matching mode: loose and strict. The loose mode only expect the
request to be performed on a suffix-compatible hostname. For instance, api
would match api.example.com and v1.api.example.com as well.

To prevent this and perform a _strict_ match, simply specify true the
second argument. The domain of the request will have to supply exactly the same
amount of labels matching the expectations.

// match every request exactly from 'api.*.*'
app.use (subdomain ("api", api.handle, true));

Skip labels

By default, the two first labels are ignored since Web applications are
typically served under two domain levels (eg. example.com). If it’s not the
case, the number of skipped labels can be set to any desirable value.

// match exactly 'api.example.com'
app.use (subdomain ("api.example.com", api.handle, true, 0));

 Recipes

Recipes

Recipes are documents providing approaches to common Web development tasks and
their potential integration with Valum.

	Bump
	Resource pooling

	Configuration
	Key file

	JSON

	YAML

	Other approaches

	JSON
	Produce and stream JSON

	Serialize GObject

	Persistence
	Memcached

	Resources
	Integration

	Scripting
	Lua

	Scheme (TODO)

	Templating
	Compose

	Template-GLib

 Bump

Bump

Bump is a library providing high-level concurrency patterns.

Resource pooling

A resource pool is a structure that maintain and dispatch a set of shared
resources.

There’s various way of using the pool:

	execute with a callback

	acquire a claim that will release the resource automatically

	acquire a resource that has to be released explicitly

using Bump;
using Valum;

var app = new Router ();

var connection_pool = new ResourcePool<Gda.Connection> ();

connection_pool.construct_properties = {
 Property () {}
};

app.get ("/users", (req, res, next) => {
 return connection_pool.execute_async<bool> ((db) => {
 var users = db.execute_select_command ("select * from users");
 return next ();
 });
});

 Configuration

Configuration

There exist various way of providing a runtime configuration.

If you need to pass secrets, take a look at the Libsecret [https://wiki.gnome.org/Projects/Libsecret] project. It allows
one to securely store and retrieve secrets: just unlock the keyring and start
your service.

Key file

GLib provide a very handy way of reading and parsing key files [https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html], which are
widely used across freedesktop specifications.

It should be privileged if the configuration is mostly edited by humans.

[app]
public-dir=public

[database]
provider=mysql
connection=
auth=

using GLib;
using Valum;

var config = new KeyFile ();

config.parse_path ("app.conf");

var app = new Router ();

app.get ("/public/<path:path>",
 Static.serve_from_path (config.get_string ("app", "public-dir")));

JSON

The JSON-GLib [https://wiki.gnome.org/Projects/JsonGlib] project provide a really convenient JSON parser and generator.

{
 "app": {
 "publicDir": "public"
 },
 "database": {
 "provider": "mysql",
 "connection": "",
 "auth": ""
 }
}

using Json;
using Valum;

var parser = new Parser ();
parser.parse_from_file ("config.json");

var config = parser.get_root ();

var app = new Router ();

app.get ("/public/<path:path>",
 Static.serve_from_path (config.get_object ("app").get_string_member ("publicDir")));

YAML

There is a GLib wrapper around libyaml [https://github.com/fengy-research/libyaml-glib] that makes it more convenient to use.
YAML in itself can be seen as a human-readable JSON format.

app:
 publicDir: public
database:
 provider: mysql
 connection:
 auth:

using Valum;
using Yaml;

var config = new Document.from_path ("config.yml").root as Node.Mapping;

var app = new Router ();

app.get ("/public/<path:path>",
 Static.serve_from_path (config.get_mapping ("app").get_scalar ("publicDir").value));

Other approaches

The following approaches are a bit more complex to setup but can solve more
specific use cases:

	GXml [https://wiki.gnome.org/GXml] or libxml2

	GSettings [https://developer.gnome.org/GSettings/] for a remote (via DBus) and monitorable configuration

	environment variables via glib-2.0/GLib.Environment [http://valadoc.org/glib-2.0/GLib.Environment.html] utilities

	CLI options (see VSGI.Server.add_main_option and VSGI.Server.handle_local_options)

 JSON

JSON

JSON is a popular data format for Web services and json-glib-1.0/Json [http://valadoc.org/json-glib-1.0/Json.html]
provide a complete implementation that integrates with the GObject type system.

The following features will be covered in this document with code examples:

	serialize a GObject

	unserialize a GObject

	parse an gio-2.0/GLib.InputStream [http://valadoc.org/gio-2.0/GLib.InputStream.html] of JSON like a Request body

	generate JSON in a gio-2.0/GLib.OutputStream [http://valadoc.org/gio-2.0/GLib.OutputStream.html] like a Response body

Produce and stream JSON

Using a json-glib-1.0/Json.Generator [http://valadoc.org/json-glib-1.0/Json.Generator.html], you can conveniently produce
an JSON object and stream synchronously it in the Response body.

app.get ("/user/<username>", (req, res) => {
 var user = new Json.Builder ();
 var generator = new Json.Generator ();

 user.set_member_name ("username");
 user.add_string_value (req.params["username"]);

 generator.root = user.get_root ();
 generator.pretty = false;

 return generator.to_stream (res.body);
});

Serialize GObject

You project is likely to have a model abstraction and serialization of GObject
with json-glib-1.0/Json.gobject_serialize [http://valadoc.org/json-glib-1.0/Json.gobject_serialize.html] is a handy feature. It
will recursively build a JSON object from the encountered properties.

public class User : Object {
 public string username { construct; get; }

 public User.from_username (string username) {
 // populate the model from the data storage...
 }

 public void update () {
 // persist the model in data storage...
 }
}

app.get ("/user/<username>", (req, res) => {
 var user = new User.from_username (req.params["username"]);
 var generator = new Json.Generator ();

 generator.root = Json.gobject_serialize (user);
 generator.pretty = false;

 return generator.to_stream (res.body);
});

With middlewares, you can split the process in multiple reusable steps to avoid
code duplication. They are described in the Router document.

	fetch a model from a data storage

	process the model with data obtained from a json-glib-1.0/Json.Parser [http://valadoc.org/json-glib-1.0/Json.Parser.html]

	produce a JSON response with json-glib-1.0/Json.gobject_serialize [http://valadoc.org/json-glib-1.0/Json.gobject_serialize.html]

app.scope ("/user", (user) => {
 // fetch the user
 app.rule (Method.GET | Method.POST, "/<username>", (req, res, next, context) => {
 var user = new User.from_username (context["username"].get_string ());

 if (!user.exists ()) {
 throw new ClientError.NOT_FOUND ("no such user '%s'", context["username"]);
 }

 context["user"] = user;
 return next ();
 });

 // update model data
 app.post ("/<username>", (req, res, next, context) => {
 var username = context["username"].get_string ();
 var user = context["user"] as User;
 var parser = new Json.Parser ();

 // whitelist for allowed properties
 string[] allowed = {"username"};

 // update the model when members are read
 parser.object_member.connect ((obj, member) => {
 if (member in allowed)
 user.set_property (member,
 obj.get_member (member).get_value ());
 });

 if (!parser.load_from_stream (req.body))
 throw new ClientError.BAD_REQUEST ("unable to parse the request body");

 // persist the changes
 user.update ();

 if (user.username != username) {
 // model location has changed, so we throw a 201 CREATED status
 throw new Success.CREATED ("/user/%s".printf (user.username));
 }

 context["user"] = user;

 return next ();
 });

 // serialize to JSON any provided GObject
 app.rule (Method.GET, "*", (req, res, next, context) => {
 var generator = new Json.Generator ();

 generator.root = Json.gobject_serialize (context["user"].get_object ());
 generator.pretty = false;

 res.headers.set_content_type ("application/json", null);

 return generator.to_stream (res.body);
 });
});

It is also possible to use json-glib-1.0/Json.Parser.load_from_stream_async [http://valadoc.org/json-glib-1.0/Json.Parser.load_from_stream_async.html]
and invoke next in the callback with Router invoke function if
you are expecting a considerable user input.

parser.load_from_stream_async.begin (req.body, null, (obj, result) => {
 var success = parser.load_from_stream_async.end (result);

 user.update ();

 context["user"] = user;

 // execute 'next' in app context
 return app.invoke (req, res, next);
});

 Persistence

Persistence

Multiple persistence solutions have bindings in Vala and can be used by Valum.

	libgda [https://developer.gnome.org/libgda/stable/] for relational databases and more

	memcached [http://memcached.org/]

	redis-glib [https://github.com/chergert/redis-glib]

	mongodb-glib [https://github.com/chergert/mongo-glib]

	couchdb-glib [https://launchpad.net/couchdb-glib] which is supported by the Ubuntu team

One good general approach is to use a per-process connection pool since
handlers are executing in asynchronous context, your application will greatly
benefit from multiple connections.

Memcached

You can use libmemcached.vapi [https://github.com/nemequ/vala-extra-vapis/blob/master/libmemcached.vapi] to access a Memcached cache storage, it is
maintained in nemequ/vala-extra-vapis GitHub repository.

using Valum;
using VSGI;

var app = new Router ();
var memcached = new Memcached.Context ();

app.get ("/<key>", (req, res) => {
 var key = req.params["key"];

 int32 flags;
 Memcached.ReturnCode error;
 var value = memcached.get ("hello", out flags, out error);

 return res.expand (value, null);
});

app.post ("/<key>", (req, res) => {
 var key = req.params["key"];
 var buffer = new MemoryOutputStream.resizable ();

 // fill the buffer with the request body
 buffer.splice (req);

 int32 flags;
 Memcached.ReturnCode error;
 var value = memcached.get ("hello", out flags, out error);

 return res.expand (value, null);
});

Server.new ("http", handler: app).run ();

 Resources

Resources

GLib provides a powerful gio-2.0/GLib.Resource [http://valadoc.org/gio-2.0/GLib.Resource.html] for bundling static
resources and optionally link them in the executable.

It has a few advantages:

	resources can be compiled in the text segment of the executable, providing
lightning fast loading time

	resource api is simpler than file api and avoids IOError handling

	application do not have to deal with its resource location or minimally if
a separate bundle is used

This only applies to small and static resources as it will grow the size of the
executable. Also, if the resources are compiled in your executable, changing
them will require a recompilation.

Middlewares are provided for that purpose, see ../middlewares/static for more
details.

Integration

Let’s say your project has a few resources:

	CTPL templates in a templates folder

	CSS, JavaScript files in static folder

Setup a app.gresource.xml file that defines what resources will to
be bundled.

<?xml version="1.0" encoding="UTF-8"?>
<gresources>
 <gresource>
 <file>templates/home.html</file>
 <file>templates/404.html</file>
 <file>static/css/bootstrap.min.css</file>
 </gresource>
</gresources>

You can test your setup with:

glib-compile-resource app.gresource.xml

Latest version of waf automatically link *.gresource.xml if you load
the glib2 plugin and add the file to your sources.

bld.load('glib2')

bld.program(
 packages = ['valum-0.1'],
 target = 'app',
 source = bld.path.ant_glob('**/*.vala') + ['app.gresource.xml'],
 uselib = ['VALUM'])

The app example [https://github.com/valum-framework/valum/tree/master/examples/app] serves its static resources this way if you need a code
reference.

 Scripting

Scripting

Through Vala VAPI bindings [https://wiki.gnome.org/Projects/Vala/Bindings],
application written with Valum can embed multiple interpreters and JIT to
provide facilities for computation and templating.

Lua

luajit [http://luajit.org/] ships with a VAPI you can use to access a Lua VM, just add
--pkg lua to valac.

valac --pkg valum-0.1 --pkg lua app.vala

require 'markdown'
return markdown('## Hello from lua.eval!')

using Valum;
using VSGI;
using Lua;

var app = new Router ();
var lua = new LuaVM ();

// GET /lua
app.get ("/lua", (req, res) => {
 // evaluate a string containing Lua code
 res.expand_utf8 (some_lua_code, null);

 // evaluate a file containing Lua code
 return res.expand_utf8 (lua.do_file ("scripts/hello.lua"));
});

Server.new ("http", handler: app.handle).run ();

The sample Lua script contains:

require 'markdown'
return markdown("# Hello from Lua!!!")
-- returned value will be appended to response body

Resulting response

<h1>Hello from Lua!!!</h1>

Scheme (TODO)

Scheme can be used to produce template or facilitate computation.

app.get ("/hello.scm", (req, res) => {
 return res.expand_utf8 (scm.run ("scripts/hello.scm"));
});

Scheme code:

;; VALUM_ROOT/scripts/hello.scm
(+ 1 2 3)
;; returned value will be casted to string
;; and appended to response body

 Templating

Templating

Template engines are very important tools to craft Web applications and a few
libraries exist to handle that tedious work.

Compose

For HTML5, Compose [https://github.com/arteymix/compose] is quite appropriate.

app.get ("/", (req, res) => {
 return res.expand_utf8 (
 html ({},
 head ({},
 title ()),
 body ({},
 section (
 h1 ({}, "Section Title")))));
});

It comes with two utilities: take and when to iterate and perform
conditional evaluation.

var users = Users.all ();

take<User> (() => { return users.next (); },
 (user) => { return user.username; });

when (User.current ().is_admin,
 () => { return p ({}, "admin") },
 () => { return p ({}, "user") });

Strings are not escaped by default due to the design of the library. Instead,
all unsafe value must be escaped properly. For HTML, e is provided.

e (user.biography);

Templates and fragments can be store in Vala source files to separate concerns.
In this case, arguments would be used to pass the environment.

using Compose.HTML5;

namespace Project.Templates
{
 public string page (string title, string content)
 {
 return
 div ({"id=%s".printf (title)},
 h2 ({}, e (title)),
 content);
 }
}

Template-GLib

Template-GLib [https://github.com/chergert/template-glib] provide a more traditional solution that integrates with
GObject. It can render properties and perform method calls.

using Tmpl;

var home = new Template.from_resource ("home.tmpl");

app.get ("/", (req, res) => {
 var scope = new Scope ();
 scope.set_string ("title", "Home");
 home.expand (scope, res.body);
});

 Hacking

Hacking

This document addresses hackers who wants to get involved in the framework
development.

Code conventions

Valum uses the Vala compiler coding style [https://wiki.gnome.org/Projects/Vala/Hacking#Coding_Style] and these rules are specifically
highlighted:

	tabs for indentation

	spaces for alignment

	80 characters for comment block and 120 for code

	always align blocks of assignation around = sign

	remember that little space between a function name and its arguments

	doclets should be aligned, grouped and ordered alphabetically

General strategies

Produce minimal headers, especially if the response has an empty body as every
byte will count.

Since GET handle HEAD as well, verifying the request method to prevent
spending time on producing a body that won’t be considered is important.

res.headers.set_content_type ("text/html", null);

if (req.method == "HEAD") {
 size_t bytes_written;
 return res.write_head (out bytes_written);
}

return res.expand_utf8 ("<!DOCTYPE html><html></html>");

Use the construct block to perform post-initialization work. It will be
called independently of how the object is constructed.

Tricky stuff

Most of HTTP/1.1 specification is case-insensitive, in these cases,
libsoup-2.4/Soup.str_case_equal [http://valadoc.org/libsoup-2.4/Soup.str_case_equal.html] must be used to perform comparisons.

Try to stay by the book and read carefully the specification to ensure that the
framework is semantically correct. In particular, the following points:

	choice of a status code

	method is case-sensitive

	URI and query are automatically decoded by libsoup-2.4/Soup.URI [http://valadoc.org/libsoup-2.4/Soup.URI.html]

	headers and their parameters are case-insensitive

	\r\n are used as newlines

	do not handle Transfer-Encoding, except for the libsoup-2.4
implementation with steal_connection: at this level, it’s up to the HTTP
server to perform the transformation

The framework should rely as much as possible upon libsoup-2.4 to ensure
consistent and correct behaviours.

Coverage

gcov [http://gcc.gnu.org/onlinedocs/gcc/Gcov.html] is used to measure coverage of the tests on the generated C code. The
results are automatically uploaded to Codecov [https://codecov.io/gh/valum-framework/valum] on a successful build.

You can build Valum with coverage by passing the -D b_coverage flag during
the configuration step.

meson -D b_coverage=true
ninja test
ninja coverage-html

Once you have identified an uncovered region, you can supply a test that covers
that particular case and submit us a pull request on GitHub [https://github.com/valum-framework/valum/pulls].

Tests

Valum is thoroughly tested for regression with the glib-2.0/GLib.Test [http://valadoc.org/glib-2.0/GLib.Test.html]
framework. Test cases are annotated with @since to track when a behaviour
was introduced and guarantee its backward compatibility.

You can refer an issue from GitHub by calling Test.bug with the issue
number.

Test.bug ("123");

Version bump

Most of the version substitutions is handled during the build, but some places
in the code have to be updated manually:

	version and api_version variable in meson.build

	GIR version annotations for all declared namespaces

	version and release in docs/conf.py

 GNU Lesser General Public License

GNU Lesser General Public License

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

	
	a) under this License, provided that you make a good faith effort to

	ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

	
	b) under the GNU GPL, with none of the additional permissions of

	this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

	
	a) Give prominent notice with each copy of the object code that the

	Library is used in it and that the Library and its use are
covered by this License.

	
	b) Accompany the object code with a copy of the GNU GPL and this license

	document.

4. Combined Works

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

	a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

	b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

	c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	d) Do one of the following:

	0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

	1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

	e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

	a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

	b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Index

Index

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Valum Web micro-framework

 		
 Installation

 		
 Packages

 		
 Fedora

 		
 Nix

 		
 Solus

 		
 Arch Linux (AUR)

 		
 Subproject

 		
 Docker

 		
 Vagrant

 		
 Dependencies

 		
 Download the sources

 		
 Build

 		
 Install

 		
 Run the tests

 		
 Run the sample application

 		
 Quickstart

 		
 Simple ‘Hello world!’ application

 		
 Building with valac

 		
 Building with Meson

 		
 Building with waf

 		
 Running the example

 		
 Application

 		
 Creating an application

 		
 Binding a route

 		
 Serving the application

 		
 VSGI

 		
 HTTP authentication

 		
 Basic

 		
 Connection

 		
 Request

 		
 Method

 		
 Headers

 		
 Query

 		
 Body

 		
 Response

 		
 Status

 		
 Reason phrase

 		
 Headers

 		
 Body

 		
 Tee

 		
 End

 		
 Cookies

 		
 Extract cookies

 		
 Lookup a cookie

 		
 Marshall a cookie

 		
 Sign and verify

 		
 Converters

 		
 Server

 		
 HTTP

 		
 CGI

 		
 FastCGI

 		
 SCGI

 		
 Custom implementation

 		
 Parameters

 		
 Listening

 		
 Serving

 		
 Forking

 		
 Application

 		
 Handler

 		
 Error handling

 		
 Asynchronous processing

 		
 Dynamic loading

 		
 Router

 		
 Route

 		
 Method

 		
 Non-standard method

 		
 Reverse

 		
 Introspection

 		
 Named route

 		
 Once

 		
 Use

 		
 Asterisk

 		
 Rule

 		
 Remarks

 		
 Types

 		
 Helpers

 		
 Regular expression

 		
 Matcher callback

 		
 Scoping

 		
 Context

 		
 Next

 		
 Sequence

 		
 Error handling

 		
 Subrouting

 		
 Cleaning up route logic

 		
 Redirection and Error

 		
 Default handling

 		
 Informational (1xx)

 		
 Success (2xx)

 		
 Redirection (3xx)

 		
 Client (4xx) and server (5xx) error

 		
 Errors in next

 		
 Middlewares

 		
 Authenticate

 		
 Basepath

 		
 Basic

 		
 Content Negotiation

 		
 Preference and quality

 		
 Error handling

 		
 Custom comparison

 		
 Helpers

 		
 Decode

 		
 Safely

 		
 Sequence

 		
 Server-Sent Events

 		
 Multi-line messages

 		
 Static Resource Delivery

 		
 File backend

 		
 Resource backend

 		
 Compression

 		
 Content type detection

 		
 Deal with missing resources

 		
 Options

 		
 Status

 		
 Subdomain

 		
 Strict

 		
 Skip labels

 		
 Forward

 		
 Recipes

 		
 Bump

 		
 Resource pooling

 		
 Configuration

 		
 Key file

 		
 JSON

 		
 YAML

 		
 Other approaches

 		
 JSON

 		
 Produce and stream JSON

 		
 Serialize GObject

 		
 Persistence

 		
 Memcached

 		
 Resources

 		
 Integration

 		
 Scripting

 		
 Lua

 		
 Scheme (TODO)

 		
 Templating

 		
 Compose

 		
 Template-GLib

 		
 Hacking

 		
 Code conventions

 		
 General strategies

 		
 Tricky stuff

 		
 Coverage

 		
 Tests

 		
 Version bump

 		
 GNU Lesser General Public License

 		
 0. Additional Definitions

